This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy demand, and energy supply) could differ materially due to changes in technology, the development of new supply sources, political events, demographic changes, and other factors discussed herein (and in Item 1A of ExxonMobil’s latest report on Form 10-K or information set forth under “factors affecting future results” on the “investors” page of our website at www.exxonmobil.com). This material is not to be reproduced without the permission of Exxon Mobil Corporation.
Agenda

• ExxonMobil
• FuelCell Energy
• Overview
• Carbon capture
• Sequestration
• Summary
ExxonMobil’s CCS Experience

• Working interest in approximately one-third of the world’s CCS capacity
 – 6.9 million metric tons CO₂ captured for sequestration in 2015
• Current CCS efforts focus on:
 – Developing technologies to reduce CO₂ capture costs
 – Advocating for sound policy
• Supply, Recovery & Storage of energy
• More than 50 installations globally with the world’s leading companies
• Manufacturing and operations on 3 continents
• Billions of KWh’s of ultra-clean power delivered
• American innovation and manufacturing
Long-Term Stabilization Requires Transformation

Efficiency / Reduce Demand → Decarbonize Global Economy → Negative GHG Emissions
Why fuel cell carbon capture?

- Commercially available technology
- Modular design
- Lower costs - generates power while capturing CO₂
- Applicable to natural gas & coal-fired power plants
- Domestic fuel source with minimal CO₂ emissions
- American ingenuity for global application
CO$_2$ Capture and Storage Background

- Power generation and industrial operations major sources of CO$_2$
- Amine CO$_2$ capture proven technology
- Storage technology proven, at small scale

Note: CO$_2$ source data from EPA
Potential CO$_2$ Capture Using Carbonate Fuel Cells

- Fuel cell carbon capture enables typical 500 megawatt (MW) gas-fired power plant to generate additional 120 MW of power
- Potential to capture more than 90 percent of a natural gas-fired power plant’s CO$_2$ emissions
- Further potential to produce up to 150 million cf/day of hydrogen
Summary

- Making a domestic fuel source even more environmentally friendly
- Utilizing commercially proven fuel cell technology
- Modular and lower costs
- Invented in America
- Collaboration brings together world-leaders in respective industries